
The libRoadRunner SBML JIT Compiler and Simulation
Library

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. Sauro

August 21, 2014

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 1 / 29

libRoadRunner SBML Simulation Library

What Is It?

A Plymouth RoadRunner?

No, we can actually take a corner!

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 2 / 29

libRoadRunner SBML Simulation Library

What Is It?

A Plymouth RoadRunner?

No, we can actually take a corner!

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 2 / 29

libRoadRunner SBML Simulation Library

What Is It?

A Plymouth RoadRunner?

No, we can actually take a corner!

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 2 / 29

libRoadRunner SBML Simulation Library

What Is It?

A modular library for SBML JIT compilation, simulation and analysis.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 3 / 29

libRoadRunner SBML Simulation Library

Features

JIT Compiler

Analysis Features (MCA, Steady State,...)

Cross Platform: OSX (10.6 and up), Linux (RHEL 5 and up), Win32.

C++ with extensive native Python binding

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 4 / 29

libRoadRunner SBML Simulation Library

History

Original C# library written by Herbert Sauro and Frank Bergmann.

Line by line transliteration to C++ by Totte Karlsson

Current version: Ground up new design

Kept name, re-used libStruct and other analysis functionality in
original RoadRunner

Python API wraps C++ library with Pythonic sugar.

C-API

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 5 / 29

libRoadRunner SBML Simulation Library

Modular Design

Component based design, everything is pure virtual interfaces.

Strict separation of model state and propagator.

Γ(t) = e iLtΓ(0)

Dynamically pluggable models (system state) and integrators
(propagator)

LLVM JIT is primary,
LLVM MCJIT prototype for ARM (developed by Kyle Medley)
GPU based on OpenCL (Kyle Medley)
CVODE based integrator is primary
Gillespie Direct Method integrator.
RK45 integrator (or is it just RK4?)

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 6 / 29

SBML Language Features

SBML as a Declarative Language

Computation is specified via rules and reactions

Fully compliant SBML event system

Assignment rules

Initial assignment rules

Functions

most implentations treat them as macros
not always the most efficient form.
trade off between function call overhead and increase in code segment
size.
macros increase JIT compilation time
developing heuristics of when more efficient to treat as macro or
function.
function as macros yield dynamic scoping
most simulators expand functions inline, in order to be compatible, we
implement dynamic scoping.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 7 / 29

SBML Language Features

SBML as a Declarative Language

Reactions
d

dt
S(t) = N(t) · ν(S(t),p)

Rate Rules

System Dynamics with Events

S(t) =
∑
E

∫ ti+1

ti

Ṡ(pi , t)dt.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 8 / 29

Compiler Design

JIT Compilation

Compiler design overview: (1) lexical (2) syntactic, (3) semantic (4)
intermediate code generation, (5), code optimizer, and (6) native
code generator.

Phases 1 through 4 are the analysis phase.

Source code is separated into parts and then arranged into a
meaningful structure (or grammar of the language).

Stages 5 through 6 are the synthesis phases.

Executable machine code is generated.

Initial and final stages are generalizable.

First phases are handled by libSBML.

Final phase is handled by LLVM.

We perform the semantic, intermediate and partially code
optimization phases.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 9 / 29

Compiler Design

JIT Compilation

libSBML effectively yields an AST

Infix MathML AST

x + 2 + (y * 5)

<math>

<apply >

<plus/>

<ci>x</ci>

<cn>2<cn>

<apply>

<times/>

<ci>y</ci>

<cn>5</cn>

</apply>

</apply >

</math>

+

x 2 *

y 5

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 10 / 29

Compiler Design

JIT Compilation

We generate intermediate language representation.

Processed by LLVM to generate machine native code

LLVM is re-targetable, x86 is most common,

Also supports ARM, SPARC, PPC, etc code generators

GPU code generation in development.

LLVM IR is SSA or Single Static Assignment:

each var may be assigned exactly once
contract to Java byte code or MSIL which are stack based ILs.

Simple low level form suitable for further analysis, optimization and
native machine code generation.

Fairly easy to look at LLVM IR and immediately tell what x86
instructions will be generated.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 11 / 29

Compiler Design

JIT Compilation

We have very simple expression generator.

Does produce large number of redundant operations.

LLVM optimization pass performs constant folding, instruction
combining, dead code elimination, etc...

Mixed Mode Arithmetic

(+ 1.123 1.1 5), (* 1.0 2.34 (> A 5)).

Results of AST subtree may be logical, integer or double.
Sign extend logicals to double for arithmetic.
Integers and doubles used in logical operations are checked for zero to
yield logical (fcmp, icmp)

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 12 / 29

Compiler Design

JIT Compilation

Data layout is tuned specifically for each model.

All state variables are grouped in a contiguous block.

State variables are accessed directly by the integrator, (single pointer
assignment, no copying is involved).

Lazy Evaluation

No redundant state variables are ever created.
Only store amounts
Everything is accessed via JITed accessors functions.
Rules are compiled into accessors functions.
Accessor functions are effectively a indirect branch (jmp *%eax)

Address is computed at compile time (jump table).

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 13 / 29

Implementation of SBML Features

Symbol Resolution

Each symbol in procedural languages typically correspond to a single
location.

Symbol resolution is handled with a symbol table

Maps symbols to memory locations
May be chained - local global scope.

In SBML, symbols mean different things at different times

Initial assignment, assignment and functions apply at different times.
Symbols are not assigned memory locations if they are assignment
rules.

Sometimes a symbol table is not enough

We created a symbol forest

Replacement rules are resolved in the symbol forest.

Can be chained

Function to model to initial state scope.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 14 / 29

Performance

Benchmarking: Brusselator and Piecewise Functions

The piecewise models have parameter(s) defined by a rate rule, and the rate of these parameters is the

piecewise sin(t) function. The piecewise test was specifically written to exercise the model state vector

rate evaluations in the generated / interpreted code. The Brusselator is a fairly simple, non-stiff oscillating

system, each instance of the Brusselator consists of four state variables, e.g. the 500 model in Table 3

consists of 20, 000 state variables. This system was written to test how well the SBML libraries cope with

large systems. The timings are the total wall time (‘‘real’’ value from the Unix ‘‘time’’ command) to

complete each process. Tests were run on a 2.6 GHz Mac Pro, OS X 10.6, and used COPASI v. 4.9.43,

libSBMLSim v. 1.1 and SBSCL v. 1.3. Note, we experienced instability of libSBMLSim runs with >100

copies of the Brusselator system or complex SBML.

#
Bru

sse
lat

or
s

lib
Roa

dR
un

ne
r - std

lib
Roa

dR
un

ne
r - sti

ff

COPA
SI

lib
SB

M
LSim

SB
SC

L

#
Rat

e Rule
s

lib
Roa

dR
un

ne
r - std

lib
Roa

dR
un

ne
r - sti

ff

COPA
SI

lib
SB

M
LSim

SB
SC

L

50 0.5 0.8 0.9 12.2 13.0 1 1.60 1.84 12.3 N/A 2.4
100 0.9 2.3 3.8 50.5 46.1 2 2.14 2.61 24.1 N/A 13:20
150 1.1 4.4 7.2 N/A 1:52 3 2.71 3.68 35.2 N/A 39:52
200 1.9 7.2 13.2 N/A 3:51 4 3.39 4.83 46.5 N/A 1:32:32
250 2.6 11.1 21.8 N/A 8:37 5 4.20 6.48 58.4 N/A 3:04:21
300 3.3 15.6 30.1 N/A 14:09
350 3.9 21.5 46.3 N/A 21:11
400 4.7 28.6 55.7 N/A 33:35
450 5.6 36.3 1:14 N/A 48:12
500 6.6 44.5 1:35 N/A 1:14:21

Table 3: All times are in seconds. The first set of tests consisted of N copies of the Brusselator system in
a single model. The second set was a sin function implemented as a 63 element piecewise SBML functions
combined with N parameters defined by rate rules integrating the sin function. Test models are available at
libRoadRunner.org.

The first set of results indicate that in the case of non-stiff systems, the RoadRunner non-stiffs solver

clearly scales linearly with system size and the stiff solver scales quadratically. The Brusselator is a non-stiff

periodic systems which causes the CVODE non-stiff solver to operate in a fairly fixed time step regime,

and here, this solver scales directly with system size. Also, the generated LLVM stores the stoichiometric

coefficients in compressed sparse row (CSR) format, the number of reactions is directly proportional to

the system size, and the CSR matrix-vector product is proportional to the number of non-zeros in the

stoichiometry matrix by the reaction rate vector size. Thus, the both the ODE solver, and the state vector

rate calculations scale directly with system size.

The stiff solver on the other hand scales quadratically with system size. Here, the state vector rate

23

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 15 / 29

Performance

Benchmarking: Standard vs. Stiff SolverThe repressilator was downloaded directly from the SOSLib web site at http://www.tbi.univie.ac.at/

~raim/odeSolver/models/mayleonnard_repressilator2_without_rules.xml.

Models 9 through 22 have wildly varying initial transients, but rapidly reach a steady state value.

model 9 14 22 33 repressilator
simulation time 150 300 2000 60 10e4
state variables 22 86 28 10 6
absolute 1e-15 1.0e-4 1.0e-4 1.0e-4 1.0e-4
relative 1e-9 1.0e-9 1.0e-9 1.0e-9 1.0e-9
dynamics T / S T / S T / S oscil oscil / stiff
libRoadRunner - stiff 95 510 230 125 1,040
libRoadRunner - std 760 920 235 180 3,320
COPASI 200 1,980 510 250 1,600
SBSCL 1,700 6,950 25,300 2,200 98,000

2005 SOSLib Data *Not comparable to above data
absolute 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-14
relative 1.0e-9 1.0e-9 1.0e-9 1.0e-9 1.0e-9
Dizzy 1.11.1
ODEtoJava-dopr54-adaptive

15,499 12,711 2,634 19,350 6,369

Jarnac 2.16n 344 14,531 1,157 5,843 4,516
SBMLToolbox
MatlabR14SP3ode15s

188 920 302 5,554 6,681

COPASI 4.0 Build 15 156 4,062 109 1,437 500
SOSlib 1.6.0pre
from CVS, Nov. 17th 2005

234 515 171 562 1,062

Table 4: A listing of performance times from the BioModels models that were originally used to test SOSLib.
All times are in milliseconds.

This second sets of tests complete in very short amount of time. The short duration of these tests would

tend to give an advantage to interpreter based SBML engines and the time for setting up an interpreter is

typically faster than JIT compiling. The very short nature of these tests would also tend to penalize Java

based engines as there is a much longer program load time for Java vs native compiled programs.

Because of the stiff nature of these models, there is a significant advantage in using the stiff implicit

solver. Here, in order to achieve any numerical stability, the non-stiff solvers end up using an extremely

small time step which results in very long run times. The implicit stiff solvers are unconditionally stable and

can use larger time steps (at the cost of solving a more complex problem), furthermore, the stiff solvers can

better adapt time step size than the non-stiff counterparts.

In summary, SBML run time performance is highly operating system, model and integrator specific.

There is no single choice of integrator that is universally better. In LibRoadRunner we have provided a

default configuration which performs well with the SBML test suite, however based on the type of model

used, this may be inappropriate. Therefore, our API makes it very simple to change integration behavior. All

of the integration tuning parameters, such as stiff vs non-stiff, error tolerance, internal integrator parameters

25

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 16 / 29

Performance

Sparse Multiply

Linear vs Quadratic scaling.

Faster to perform CSR than JIT multiply

Need to consider size of L1 and L2 caches

CSR code segment fits entirely in L1 cache

JITed code requires continuous fetch for code and data segments.

Is a bad choice when stoichiometric coefficients are state variables.

Rarely encountered - optimize for most common situations.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 17 / 29

Performance

Integrators

New integrators only require implementing the Integrator interface
and registering with the IntegratorFactory.

We plan on investigating many new integrators.

LSODA not very suitable: FORTRAN with global state vars can not
be used in parallel.

GPU based integrator currently being developed by Kyle Medley.

New multi-scale integrators Sundials ARKode suite will be
implemented.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 18 / 29

Conserved Moieties

Conserved Moieties

What are they and why should you care.

!"#$%&'($)"'*+,-+.$)()/+*$&,+$01+,+2$

3"'*+,-+.$)()/+*$4'$&$5&01#&($&55+&,$&*$/4'+&,/($
.+5+'.+'0$,"#*$4'$01+$*0"4)14"%+0,($%&0,467$

8&'9:;<$=$>$

?@$

ABCD$=$AE$
E>$=$CDB:AEFED<$

Sd(t) = L0Si (t) + T.

Conserved Moiety Converter

libSBML extension and converter.

Mutable Conserved Moieties and JIT

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 19 / 29

Python API

Native Python API

Designed from the ground up as native Python module

SWIG’ed C++ with heavy customization

Used 100% native Python types - lists, numpy array, etc...

Completely self contained

Designed to feel like part of SciPy

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 20 / 29

Python API

Native Python API

Designed to be embedded in existing simulators

Full access to everything via numpy arrays

No copying

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 21 / 29

Python API

Python API Interactive Use Features

Dynamic Python properties.

Native Python documentation.

All variables accessible dictionaries.

Selection syntax.

r = RoadRunner(’test.xml’) # create a RoadRunner obj

r.k1 = 0.1 # set a param

res = r.simulate () # default time series sim

res = r.simulate (0,5,100,[’time’, ’[S1]’, ’S2’, "S1’"])

r[’init(S3)’] = 5

r.simulate(reset=True)

r.simulate(integrator=’gillespie ’)

r.simulate(integrator=’rk45’)

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 22 / 29

Python API

Event Hooks

Tie into SBML event system

Hook models into existing simulations.

Register user callbacks.

Any code in callbacks can modify any model parametere.

def onEvent(integrator , model , eventId , time):

print("onEvent , time: {}".format(time))

model.SomeParameter = getSomeData(eventId)

r = RoadRunner(’test.xml’)

listener = PyIntegratorListener ()

listener.setOnEvent(onEvent)

r.getIntegrator (). setListener(listener)

res = r.simulate(0, 10, 100)

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 23 / 29

Python API

Real Work: Membrane Protein Mediated RedOx Reactions

capacitance vs. voltage for membrane electrical double layer.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 24 / 29

Python API

Real Work: Membrane Protein Mediated RedOx Reactions

r = RoadRunner(’cap.xml’) # create a RoadRunner obj

r.M = 0.1 # set the molarity

def c(v): # cap as fuction of volt

r.V = v # set voltage

r.steadyState () # perform steady state

return r.C # return capacitance

cap = [c(v) for v in arange(-4, 4, 0.1)]

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 25 / 29

Python API

Current Applications

University of Washington: Tellurium

Indiana University: CompuCell3D

University of Southern California: Bouteiller Lab

Charité - Universitätsmedizin Berlin

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 26 / 29

Python API

Shameless Tellurium Plug

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 27 / 29

Python API

What Is It?

Definitly Not Plymouth RoadRunner.

Small, Light and Fast: More like a Lotus Elise.

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 28 / 29

Python API

Acknowledgements

For More Information,
http://libroadrunner.org

The libRoadRunner project is support by NIH/NIGMS (GM081070).

Endre Somogyi, Maciej Swat, James A. Glazier, Herbert M. SauroThe libRoadRunner SBML JIT Compiler and Simulation LibraryAugust 21, 2014 29 / 29

http://libroadrunner.org

	libRoadRunner SBML Simulation Library
	SBML Language Features
	Compiler Design
	Implementation of SBML Features
	Performance
	Conserved Moieties
	Python API

